Copied to
clipboard

G = C7×C16⋊C22order 448 = 26·7

Direct product of C7 and C16⋊C22

direct product, metabelian, nilpotent (class 4), monomial, 2-elementary

Aliases: C7×C16⋊C22, D162C14, C28.65D8, C56.53D4, C1126C22, SD321C14, M5(2)⋊1C14, C56.76C23, C16⋊(C2×C14), C8.3(C7×D4), C4○D82C14, D82(C2×C14), (C7×D16)⋊6C2, C4.14(C7×D8), (C14×D8)⋊24C2, (C2×D8)⋊10C14, Q162(C2×C14), (C7×SD32)⋊5C2, C14.88(C2×D8), (C2×C14).27D8, C2.16(C14×D8), C4.11(D4×C14), C22.5(C7×D8), C28.318(C2×D4), (C2×C28).346D4, (C7×D8)⋊18C22, (C7×M5(2))⋊3C2, C8.7(C22×C14), (C7×Q16)⋊16C22, (C2×C56).278C22, (C7×C4○D8)⋊9C2, (C2×C4).47(C7×D4), (C2×C8).30(C2×C14), SmallGroup(448,917)

Series: Derived Chief Lower central Upper central

C1C8 — C7×C16⋊C22
C1C2C4C8C56C7×D8C7×D16 — C7×C16⋊C22
C1C2C4C8 — C7×C16⋊C22
C1C14C2×C28C2×C56 — C7×C16⋊C22

Generators and relations for C7×C16⋊C22
 G = < a,b,c,d | a7=b16=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b7, dbd=b9, cd=dc >

Subgroups: 226 in 90 conjugacy classes, 46 normal (30 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, Q8, C23, C14, C14, C16, C2×C8, D8, D8, D8, SD16, Q16, C2×D4, C4○D4, C28, C28, C2×C14, C2×C14, M5(2), D16, SD32, C2×D8, C4○D8, C56, C2×C28, C2×C28, C7×D4, C7×Q8, C22×C14, C16⋊C22, C112, C2×C56, C7×D8, C7×D8, C7×D8, C7×SD16, C7×Q16, D4×C14, C7×C4○D4, C7×M5(2), C7×D16, C7×SD32, C14×D8, C7×C4○D8, C7×C16⋊C22
Quotients: C1, C2, C22, C7, D4, C23, C14, D8, C2×D4, C2×C14, C2×D8, C7×D4, C22×C14, C16⋊C22, C7×D8, D4×C14, C14×D8, C7×C16⋊C22

Smallest permutation representation of C7×C16⋊C22
On 112 points
Generators in S112
(1 71 39 50 18 92 109)(2 72 40 51 19 93 110)(3 73 41 52 20 94 111)(4 74 42 53 21 95 112)(5 75 43 54 22 96 97)(6 76 44 55 23 81 98)(7 77 45 56 24 82 99)(8 78 46 57 25 83 100)(9 79 47 58 26 84 101)(10 80 48 59 27 85 102)(11 65 33 60 28 86 103)(12 66 34 61 29 87 104)(13 67 35 62 30 88 105)(14 68 36 63 31 89 106)(15 69 37 64 32 90 107)(16 70 38 49 17 91 108)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 11)(3 9)(4 16)(5 7)(6 14)(8 12)(13 15)(17 21)(18 28)(20 26)(22 24)(23 31)(25 29)(30 32)(33 39)(34 46)(35 37)(36 44)(38 42)(41 47)(43 45)(49 53)(50 60)(52 58)(54 56)(55 63)(57 61)(62 64)(65 71)(66 78)(67 69)(68 76)(70 74)(73 79)(75 77)(81 89)(82 96)(83 87)(84 94)(86 92)(88 90)(91 95)(97 99)(98 106)(100 104)(101 111)(103 109)(105 107)(108 112)
(2 10)(4 12)(6 14)(8 16)(17 25)(19 27)(21 29)(23 31)(34 42)(36 44)(38 46)(40 48)(49 57)(51 59)(53 61)(55 63)(66 74)(68 76)(70 78)(72 80)(81 89)(83 91)(85 93)(87 95)(98 106)(100 108)(102 110)(104 112)

G:=sub<Sym(112)| (1,71,39,50,18,92,109)(2,72,40,51,19,93,110)(3,73,41,52,20,94,111)(4,74,42,53,21,95,112)(5,75,43,54,22,96,97)(6,76,44,55,23,81,98)(7,77,45,56,24,82,99)(8,78,46,57,25,83,100)(9,79,47,58,26,84,101)(10,80,48,59,27,85,102)(11,65,33,60,28,86,103)(12,66,34,61,29,87,104)(13,67,35,62,30,88,105)(14,68,36,63,31,89,106)(15,69,37,64,32,90,107)(16,70,38,49,17,91,108), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,11)(3,9)(4,16)(5,7)(6,14)(8,12)(13,15)(17,21)(18,28)(20,26)(22,24)(23,31)(25,29)(30,32)(33,39)(34,46)(35,37)(36,44)(38,42)(41,47)(43,45)(49,53)(50,60)(52,58)(54,56)(55,63)(57,61)(62,64)(65,71)(66,78)(67,69)(68,76)(70,74)(73,79)(75,77)(81,89)(82,96)(83,87)(84,94)(86,92)(88,90)(91,95)(97,99)(98,106)(100,104)(101,111)(103,109)(105,107)(108,112), (2,10)(4,12)(6,14)(8,16)(17,25)(19,27)(21,29)(23,31)(34,42)(36,44)(38,46)(40,48)(49,57)(51,59)(53,61)(55,63)(66,74)(68,76)(70,78)(72,80)(81,89)(83,91)(85,93)(87,95)(98,106)(100,108)(102,110)(104,112)>;

G:=Group( (1,71,39,50,18,92,109)(2,72,40,51,19,93,110)(3,73,41,52,20,94,111)(4,74,42,53,21,95,112)(5,75,43,54,22,96,97)(6,76,44,55,23,81,98)(7,77,45,56,24,82,99)(8,78,46,57,25,83,100)(9,79,47,58,26,84,101)(10,80,48,59,27,85,102)(11,65,33,60,28,86,103)(12,66,34,61,29,87,104)(13,67,35,62,30,88,105)(14,68,36,63,31,89,106)(15,69,37,64,32,90,107)(16,70,38,49,17,91,108), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,11)(3,9)(4,16)(5,7)(6,14)(8,12)(13,15)(17,21)(18,28)(20,26)(22,24)(23,31)(25,29)(30,32)(33,39)(34,46)(35,37)(36,44)(38,42)(41,47)(43,45)(49,53)(50,60)(52,58)(54,56)(55,63)(57,61)(62,64)(65,71)(66,78)(67,69)(68,76)(70,74)(73,79)(75,77)(81,89)(82,96)(83,87)(84,94)(86,92)(88,90)(91,95)(97,99)(98,106)(100,104)(101,111)(103,109)(105,107)(108,112), (2,10)(4,12)(6,14)(8,16)(17,25)(19,27)(21,29)(23,31)(34,42)(36,44)(38,46)(40,48)(49,57)(51,59)(53,61)(55,63)(66,74)(68,76)(70,78)(72,80)(81,89)(83,91)(85,93)(87,95)(98,106)(100,108)(102,110)(104,112) );

G=PermutationGroup([[(1,71,39,50,18,92,109),(2,72,40,51,19,93,110),(3,73,41,52,20,94,111),(4,74,42,53,21,95,112),(5,75,43,54,22,96,97),(6,76,44,55,23,81,98),(7,77,45,56,24,82,99),(8,78,46,57,25,83,100),(9,79,47,58,26,84,101),(10,80,48,59,27,85,102),(11,65,33,60,28,86,103),(12,66,34,61,29,87,104),(13,67,35,62,30,88,105),(14,68,36,63,31,89,106),(15,69,37,64,32,90,107),(16,70,38,49,17,91,108)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,11),(3,9),(4,16),(5,7),(6,14),(8,12),(13,15),(17,21),(18,28),(20,26),(22,24),(23,31),(25,29),(30,32),(33,39),(34,46),(35,37),(36,44),(38,42),(41,47),(43,45),(49,53),(50,60),(52,58),(54,56),(55,63),(57,61),(62,64),(65,71),(66,78),(67,69),(68,76),(70,74),(73,79),(75,77),(81,89),(82,96),(83,87),(84,94),(86,92),(88,90),(91,95),(97,99),(98,106),(100,104),(101,111),(103,109),(105,107),(108,112)], [(2,10),(4,12),(6,14),(8,16),(17,25),(19,27),(21,29),(23,31),(34,42),(36,44),(38,46),(40,48),(49,57),(51,59),(53,61),(55,63),(66,74),(68,76),(70,78),(72,80),(81,89),(83,91),(85,93),(87,95),(98,106),(100,108),(102,110),(104,112)]])

112 conjugacy classes

class 1 2A2B2C2D2E4A4B4C7A···7F8A8B8C14A···14F14G···14L14M···14AD16A16B16C16D28A···28L28M···28R56A···56L56M···56R112A···112X
order1222224447···788814···1414···1414···141616161628···2828···2856···5656···56112···112
size1128882281···12241···12···28···844442···28···82···24···44···4

112 irreducible representations

dim1111111111112222222244
type+++++++++++
imageC1C2C2C2C2C2C7C14C14C14C14C14D4D4D8D8C7×D4C7×D4C7×D8C7×D8C16⋊C22C7×C16⋊C22
kernelC7×C16⋊C22C7×M5(2)C7×D16C7×SD32C14×D8C7×C4○D8C16⋊C22M5(2)D16SD32C2×D8C4○D8C56C2×C28C28C2×C14C8C2×C4C4C22C7C1
# reps112211661212661122661212212

Matrix representation of C7×C16⋊C22 in GL6(𝔽113)

4900000
0490000
001000
000100
000010
000001
,
83290000
4300000
007059051
0070596251
00112000
0085535997
,
112980000
010000
00823100
00313100
000010
0074291112
,
11200000
01120000
001000
000100
00001120
0046420112

G:=sub<GL(6,GF(113))| [49,0,0,0,0,0,0,49,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[83,4,0,0,0,0,29,30,0,0,0,0,0,0,70,70,112,85,0,0,59,59,0,53,0,0,0,62,0,59,0,0,51,51,0,97],[112,0,0,0,0,0,98,1,0,0,0,0,0,0,82,31,0,74,0,0,31,31,0,29,0,0,0,0,1,1,0,0,0,0,0,112],[112,0,0,0,0,0,0,112,0,0,0,0,0,0,1,0,0,46,0,0,0,1,0,42,0,0,0,0,112,0,0,0,0,0,0,112] >;

C7×C16⋊C22 in GAP, Magma, Sage, TeX

C_7\times C_{16}\rtimes C_2^2
% in TeX

G:=Group("C7xC16:C2^2");
// GroupNames label

G:=SmallGroup(448,917);
// by ID

G=gap.SmallGroup(448,917);
# by ID

G:=PCGroup([7,-2,-2,-2,-7,-2,-2,-2,813,4790,5884,2951,242,14117,7068,124]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^16=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^7,d*b*d=b^9,c*d=d*c>;
// generators/relations

׿
×
𝔽